

## Comparison between pelleted and unpelleted feed forms on the performance and digestion of small ruminants: a meta-analysis

Y. Retnani<sup>1,\*</sup>, S.T. Risyahadi<sup>1</sup>, N. Qomariyah<sup>2,4</sup>, N.N. Barkah<sup>3,4</sup>, T. Taryati<sup>1</sup> and A. Jayanegara<sup>1,4</sup>

<sup>1</sup> Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, 16680 Bogor, Indonesia
<sup>2</sup> South Sulawesi Assessment Institute for Agricultural Technology (South Sulawesi AIAT), 90243 Makassar, Indonesia
<sup>3</sup> Graduate School of Nutrition and Feed Science, Faculty of Animal Science, IPB University, 16680 Bogor, Indonesia
<sup>4</sup> Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, 16680 Bogor, Indonesia

**KEY WORDS:** digestion, meta-analysis, pelleting, performance, small ruminant

Received: 12 January 2022 Revised: 18 March 2022 Accepted: 13 April 2022

\* Corresponding author: e-mail: yuli.retnani@yahoo.com **ABSTRACT.** The present meta-analysis aimed to evaluate the effect of pelleted feeding on the growth and performance of small ruminants using a meta-analysis. The database was developed based on 29 studies containing 54 experiments. The data were analysed using the OpenMEE software, considering differences in pelleted feeding as fixed effects and individual studies as random effects. The results showed that the pelleted feed form enhanced dry matter intake (*P* < 0.05) and increased average daily gain of small ruminants (*P* < 0.05) as compared to the unpelleted form. Digestion of dry matter, organic matter and fiber was significantly lower for the pellet feed form (*P* < 0.05). In conclusion, pelleted feed can improve production performance of small ruminants, but it reduces nutrient digestibility.

## Introduction

Animal feeds are composed of foods grown or developed for livestock and poultry. They are produced by precise selection and blending of ingredients to provide adequate nutrition that maintains animal health and improves the quality of final products such as milk, meat and eggs. Feed resources, processing and nutrition technology are the key components for organic and efficient ruminant feed production, mainly in the tropics. The diversity and distribution of roughage affect the performance of livestock. Feed processing technology is considered vital because it is related to the ease of feeding livestock transported to the islands. However, the lack of knowledge of farmers regarding efficient and inexpensive feed processing technologies can affect performance and increase stress in animals transported to the islands. Breeding cattle with standard immune systems in the tropics face more significant constraints than in sub-tropical or temperate climates, such as lower growth performance, low carcass quality and high mortality rates due to higher temperatures and humidity that increase heat stress responses (Tirawattanawanich et al., 2011; Awad et al., 2020; He et al., 2020). The lack of mobile pellet pressing, high processing costs and limited improvements regarding power feeders prevented interest in pellet feed. Recognition of the technology pelletisation benefit and the advantages for poultry and pig as a feeder is increasing interest. Currently, claims such as alfalfa pellets for increasing microbial biomass (Ishaq et al., 2019). Pelleting reduces the amount of material and shipping costs (Adesogan et al., 2019). In addition, the application of pelletised concentrates is also common in ruminant production systems, such as the dairy industry (Shrinivasa and Mathur, 2020). Moreover, supplements used during winter outdoor feeding of sheep and cows are commonly pelletised to reduce environmental losses. However, complete feed pelletisation is not yet common in most ruminant production systems.

Economic mobility and increasing demand for livestock commodities have made transportation of livestock between islands, land, sea and air unavoidable. The negative effects of transporting livestock include, among others, stress and weight loss (Trisiana et al., 2021). Therefore, a feed processing technology is needed that could facilitate feeding during transport and meet livestock needs. Provision of feed supplements is also needed for livestock during the transport to the islands, e.g. in the form of wafers or feed biscuits (Retnani et al., 2014a; b). Pellet production, on the other hand, is one alternative feed production technology to address the problem of livestock transported to the islands. Pelleted feed has been reported to facilitate livestock transportation process between regions/islands without inducing unnecessary stress. The advantages of pelleted feeding include increased feed intake, reduced scattered feed, labour efficiency, prevention of sorting feed ingredients by animals, and decreased bulk density, especially in forage feeds (Abdollahi et al., 2013). Blending roughage and concentrates in a complete feed improve nutrient use efficiency and reduce feed losses, its cost, and labour expenses. A pelleted total mixed ration (TMR) is expected to have advantages over an unpelleted TMR, particularly in feeding systems where dietary ingredients are not mixed prior to feeding, but are offered separately. Due to the elimination of feed sorting and thorough mixing before pelleting (Malik et al., 2021), nutrient intake is more uniform in case of pelleted feed (Lailer et al., 2005). This stabilizes the rumen environment and consequently reduces the risk of acute and subacute rumen acidosis. However, reduction of physical fiber effectiveness due to pelleting may interfere with pH stabilization in the rumen.

In addition, pelleted feed exert positive effects on ruminants, including higher body weight and carcass weight compared to unpelleted feeds (Li et al., 2021). However, pellets have also been reported to cause some adverse effects on ruminants when administered continuously, including increasing rumen pH, resulting in acidosis. Although several experiments have been carried out on the effect of pelleted feed in ruminants, no meta-analysis study has attempted to quantitatively summarize such a relationship. A meta-analysis is a statistical technique that aggregates the results of scientific reports. Meta-analysis able to calculate effect size that is concerned with different studies and then combines all the studies into single analysis (St-Pierre, 2001; Sauvant et al., 2008). Therefore, the aim of this work was to evaluate the effect of pelleted feeding on production performance and nutrient digestibility of small ruminants by using the meta-analysis method.

## Material and methods

# Search strategy, inclusion criteria and data extraction

A comprehensive search of the literature published in English was conducted to identify experiments involving small ruminant diets in either unpelleted or pelleted form of both mix ration and forage feeds. The literature search was carried out using the Scopus (https://www.scopus.com/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/) databases. The search was conducted between November and December of 2021 using terms with a set of the following key words in all searches: "pelleted", "pelleting", "feed", "diet", "fed", "goat", "sheep" and "lamb".

These initial searches resulted in 1295 potential references. Subsequently, the following criteria were used for literature selection: (1) published in English as full-text articles, (2) published in peerreviewed journals, (3) direct comparison between pelleted and unpelleted forms, (4) small ruminant feeds, including total mix ration and grass/forages, and (5) comparison of average daily gain, daily dry matter intake and digestibility, including dry matter, organic matter, crude protein, neutral detergent fiber and acid detergent fiber nutrients.

After the preliminary title screening, 1161 references were eliminated because their topic was not relevant to our research. After reviewing the abstracts, 134 documents were assessed and 14 duplicates were found. Subsequently, 91 articles were eliminated due to a lack of comparison of interest (42 documents), irrelevant parameters (26 documents), insufficient data for statistical meta-analysis (6 articles) and not meeting any inclusion criteria (17 documents). Ultimately, the screening yielded 29 articles for use in subsequent data coding and statistical data analysis. Details of the selection process are presented in the PRISMA-P flowchart in Figure 1, and studies included in this meta-analysis are listed in Table 1.

| Tabl | e 1. Studies selected for meta-an | ıalysis                    |                         |                      |          |        |                                                                                                                                                                                                                                                                                                                        |                             |                    |               |
|------|-----------------------------------|----------------------------|-------------------------|----------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|---------------|
| No.  | Study                             | Initial body<br>weight, kg | Starting age            | Ended age            | Phase    | Animal | Grain source and level                                                                                                                                                                                                                                                                                                 | Hay level                   | Unpelleted<br>form | TMR/<br>Grass |
| -    | Li et al. (2021)                  | $5.04 \pm 0.75$            | 8 days pre weaning      | 35 days              | Starter  | Lamb   | 65% maize, 5% wheat bran                                                                                                                                                                                                                                                                                               | 5%                          | Textured           | TMR           |
| 2    | Li et al. (2021)                  | $5.04 \pm 0.75$            | 35 days post<br>weaning | 46 days              | Starter  | Lamb   | 65% maize, 5% wheat bran                                                                                                                                                                                                                                                                                               | 5%                          | Textured           | TMR           |
| ი    | Karimizadeh et al. (2017)         | 26 ± 2.5                   | $6 \pm 1.5$ months      | 6,5 ± 1.5<br>months  | Finisher | Lamb   | 19% maize, 20 barley, 16 white bran                                                                                                                                                                                                                                                                                    | 0% hay                      | Mash               | TMR           |
| 4    | Karimizadeh et al. (2017)         | 26 ± 2.5                   | $6 \pm 1.5$ months      | $7 \pm 1.5$ months   | Finisher | Lamb   | 19% maize, 20 barley, 16 white bran                                                                                                                                                                                                                                                                                    | 0% hay                      | Mash               | TMR           |
| 5    | Karimizadeh et al. (2017)         | 26 ± 2.5                   | $6 \pm 1.5$ months      | 7.5 ± 1.5<br>months  | Finisher | Lamb   | 19% maize, 20 barley, 16 white bran                                                                                                                                                                                                                                                                                    | 0% hay                      | Mash               | TMR           |
| 9    | Karimizadeh et al. (2017)         | 26 ± 2.5                   | $6 \pm 1.5$ months      | 7.5 ± 1.5<br>months  | Finisher | Lamb   | 19% maize, 20 barley, 16 white bran                                                                                                                                                                                                                                                                                    | 0% hay                      | Mash               | TMR           |
| 7    | Coufal-Majewski et al. (2017)     | 24.6 ± 1.08                | NA                      | duration 84<br>days  | Grower   | Lamb   | 53.9% barley grain, 30% alfalfa pellets, 16.8 canola meal,<br>1% canola oil                                                                                                                                                                                                                                            | No alkaloid adde            | d Mash             | TMR           |
| ω    | Coufal-Majewski et al. (2017)     | 24.6 ± 1.08                | NA                      | duration 84<br>days  | Grower   | Lamb   | 53.8% barley grain, 30% alfalfa pellets, 16.8 canola meal,<br>1% canola oil                                                                                                                                                                                                                                            | Low level alkaloi<br>added  | d Mash             | TMR           |
| 6    | Coufal-Majewski et al. (2017)     | 24.6 ± 1.08                | NA                      | duration 84<br>days  | Grower   | Lamb   | 53.6% barley grain, 30% alfalfa pellets, 16.8 canola meal,<br>1% canola oil                                                                                                                                                                                                                                            | High level alkoloi<br>added | d Mash             | TMR           |
| 10   | Zhong et al. (2018)               | 23.3 ± 3.2                 | 105 ± 8.3 days          | 175 ± 8.3<br>days    | Finisher | Lamb   | 31% maize, 9% maize germ meal, 8% maize bran. 15% peanut shell, 14% barley malt roots                                                                                                                                                                                                                                  | 0% hay                      | Mash               | TMR           |
| 7    | Zhang et al. (2019)               | $34.9 \pm 0.5$             | 120 days                | 162 days             | Finisher | Lamb   | 24% maize, 30% peanut vine, 13% Leymus, 15% SBM,<br>16.4% wheat bran                                                                                                                                                                                                                                                   | 0% hay                      | Mash               | TMR           |
| 12   | Raju et al. (2021)                | 14.50 ± 0.41               | $3.5 \pm 0.5$ months    | 6.5 ± 0.5<br>months  | Finisher | Sheep  | 50% sorghum stover, 10% maize, 8% cotton seed, 4% ground nut cake                                                                                                                                                                                                                                                      | 0% hay                      | Mash               | TMR           |
| 13   | Raju et al. (2021)                | 14.50 ± 0.41               | $3.5 \pm 0.5$ months    | 6.5 ± 0.5<br>months  | Finisher | Sheep  | 50% sorghum stover, 10% maize, 8% cotton seed, 4% ground nut cake                                                                                                                                                                                                                                                      | 0% hay                      | Textured           | TMR           |
| 14   | Gipson et al. (2007)              | 31.9 ± 0.47                | 5 months                | Duration 12<br>weeks | Finisher | Goat   | Dehydrated alfalfa hay                                                                                                                                                                                                                                                                                                 | Plus alfalfa hay            | Loose              | Grass         |
| 15   | Gipson et al. (2007)              | 31.9 ± 0.47                | 5 months                | Duration 12<br>weeks | Finisher | Goat   | Dehydrated alfalfa hay                                                                                                                                                                                                                                                                                                 | Plus alfalfa hay            | Loose              | Grass         |
| 16   | Gipson et al. (2007)              | 31.9 ± 0.47                | 5 months                | Duration 12<br>weeks | Finisher | Goat   | Maize meal, ground oats, dehydrated alfalfa meal,<br>cottonseed meal, maize chops, dehulled soybean meal,<br>sunflower meal, fish meal, cane molasses, ammonium<br>chloride, yeast culture, hemicellulose extract, processed<br>grain by-product, roughage products, and others such as<br>mineral and vitamin sources | 0% alfalfa                  | Loose              | TMR           |

continue on the next page

| No.    | Study                  | Initial body<br>weight, kg | Starting age          | Ended age             | Phase    | Animal | Grain source and level                                                                                                                                                                                                                                                                                                 | Hay level     | Unpelleted<br>form | TMR/<br>Grass |
|--------|------------------------|----------------------------|-----------------------|-----------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|---------------|
| 17     | Gipson et al. (2007)   | 31.9 ± 0.47                | 5 months              | Duration<br>12 weeks  | Finisher | Goat   | Maize meal, ground oats, dehydrated alfalfa meal,<br>cottonseed meal, maize chops, dehulled soybean meal,<br>sunflower meal, fish meal, cane molasses, ammonium<br>chloride, yeast culture, hemicellulose extract, processed<br>grain by-product, roughage products, and others such as<br>mineral and vitamin sources | 0% alfalfa    | Loose              | TMR           |
| 18     | Amaral et al. (2005)   | 3.4                        | 15 days               | 45 days               | Starter  | Goat   | Maize hay (40.0%), ground maize (29.3%), soybean meal<br>(21.8%), molasses (4.8%), soybean oil (0.9%) and<br>minerals (3.2%)                                                                                                                                                                                           | 40% maize hay | Mash               | TMR           |
| 19     | Amaral et al. (2005)   | 3.4                        | 45 days               | 60 days               | Starter  | Goat   | Maize hay (40.0%), ground maize (29.3%), soybean meal<br>(21.8%), molasses (4.8%), soybean oil (0.9%) and<br>minerals<br>(3.2%)                                                                                                                                                                                        | 40% maize hay | Mash               | TMR           |
| 20     | Cooper et al. (1996)   | 13.95 [SD 0.863]           | 8 weeks               | 11 weeks              | Grower   | Sheep  | Affalfa (89.4), molasses (10.0%), monosodium phosphate (0.4%), premix (0.2)                                                                                                                                                                                                                                            | NA            | Chopper            | Grass         |
| 21     | Hatfield et al. (1997) | avg. BW = 36.3             | 6 months              | 6 months<br>+ 21 days | Finisher | Lamb   | 30% barley 70% alfalfa                                                                                                                                                                                                                                                                                                 | NA            | Chopper            | Grass         |
| 22     | Hatfield et al. (1997) | avg. BW = 36.3             | 6 months<br>+ 21 days | 6 months<br>+ 50 days | Finisher | Lamb   | 30% barley 70% alfalfa                                                                                                                                                                                                                                                                                                 | NA            | Chopper            | Grass         |
| 23     | Hatfield et al. (1997) | avg. BW = 36.3             | 6 months              | 6 months<br>+ 50 days | Finisher | Lamb   | 30% barley 70% alfalfa                                                                                                                                                                                                                                                                                                 | NA            | Chopper            | Grass         |
| 24     | Li et al. (2021)       | 26.3 ± 3.1                 | 3 months              | 3 months<br>+ 28 days | Finisher | Lamb   | 35% maize, 12% maize germ meal, 12% sunflower, 11.3% peanut shell, 7% rice hul, 3% cotton seed, 2% bentonite, 10% barley malt rootlets                                                                                                                                                                                 | 0% hay        | Mash               | TMR           |
| 25     | Li et al. (2021)       | 26.3 ± 3.1                 | 3 months<br>+ 28 days | 4 months<br>+ 67 days | Finisher | Lamb   | 35% maize, 12% maize germ meal, 12% sunflower, 11.3% peanut shell, 7% rice hull, 3% cotton seed, 2% bentonite, 10% barley malt rootlets                                                                                                                                                                                | 0% hay        | Mash               | TMR           |
| 26     | Li et al. (2021)       | 26.3 ± 3.1                 | 3 months              | 5 months<br>+ 67 days | Finisher | Lamb   | 35% maize, 12% maize germ meal, 12% sunflower, 11.3% peanut shell, 7% rice hull, 3% cotton seed, 2% bentonite, 10% barley malt rootlets                                                                                                                                                                                | 0% hay        | Mash               | TMR           |
| 27     | Li et al. (2021)       | <b>43.8</b> ± 4.0          | 5 months              | 5 months<br>+ 24 days | Finisher | Lamb   | 35% maize, 12% maize germ meal, 12% sunflower, 11.3% peanut shell, 7% rice hull, 3% cotton seed, 2% bentonite, 10% barley malt rootlets                                                                                                                                                                                | 0% hay        | Mash               | TMR           |
| 28     | Li et al. (2021)       | 24.9 ± 3.1                 | 3 months              | 3 months<br>+ 29 days | Finisher | Lamb   | 35% maize, 12% maize germ meal, 12% sunflower, 11.3% peanut shell, 7% rice hull, 3% cotton seed, 2% bentonite, 10% barley malt rootlets                                                                                                                                                                                | 0% hay        | Mash               | TMR           |
| contir | nued on the next page  |                            |                       |                       |          |        |                                                                                                                                                                                                                                                                                                                        |               |                    |               |

| No.   | Study                    | Initial body<br>weight, kg | Starting age    | Ended age                        | Phase                | Animal                 | Grain source and level                                                                                                       | Hay level       | Unpelleted<br>form | TMR/<br>Grass |
|-------|--------------------------|----------------------------|-----------------|----------------------------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|---------------|
| 29    | Du et al. (2019)         | 28.83 ± 0.19               | 6 months        | 6 months<br>+ 75 days            | Finisher             | Lamb                   | 99.6% fresh grass                                                                                                            | 0% hay          | Chopper            | Grass         |
| 30    | Du et al. (2019)         | 28.83 ± 0.19               | 6 months        | 6 months<br>+ 75 days            | Finisher             | Lamb                   | 99.6% hay grass                                                                                                              | 99.6% hay grass | Chopper            | Grass         |
| 31    | Economides et al. (1990) | 18.2                       | 42 days         | 119 days                         | Starter              | Lamb                   | 79% barley, 16%<br>soy bean meal, 4% wheat bran, 0.8% limestone and 0.2%<br>sodium chloride                                  | 0% hay          | Mash               | TMR           |
| 32    | Economides et al. (1990) | 16.3                       | 42 days         | 119 days                         | Starter              | Lamb                   | 79% barley, 16%<br>soy bean meal, 4% wheat bran, 0.8% limestone and 0.2%<br>sodium chloride                                  | 0% hay          | Mash               | TMR           |
| 33    | Tag Eldin et al. (2011)  | 22 ± 5.7                   | 3.4 months      | 3.4 months<br>+ 74 days          | Grower               | Sheep                  | 35% molasess, 20% sorghum grain, 15% sugarcane, 10% groundnut, 15.5% wheat grain, 2% calcium                                 | 0% hay          | Mash               | TMR           |
| 34    | Malik et al. (2020)      | 27.4 ± 1.62                | NA              | NA                               | Finisher             | Goats                  | 23% maize grain, 10% wheat grain, 13% soy hulls, 20% maize gluten, 9.5% soybean meal, 15% wheat straws, 5% sugarcane molases | 0% hay          | Mash               | TMR           |
| 35    | Reddy et al. (2012)      | NA                         | 4 to 5 months   | 9-10 months                      | s Starter/<br>weaned | Goats                  | 35% red gram straw, 25% dried leucaena leaves, 5% ground nut cake, 30% maize                                                 | 0% hay          | Mash               | TMR           |
| 36    | Reddy et al. (2012)      | NA                         | 4 to 5 months   | 9-10 months                      | s Starter/<br>weaned | Goats                  | 50% red gram straw, 10% dried leucaena leaves, 8%<br>ground nut cake, 14% maize, 5% wheat bran, 8% red<br>gram husk          | 0% hay          | Mash               | TMR           |
| 37    | Trabi et al. (2019)      | 26.80 ± 0.32               | around 180 days | approx. 180<br>days<br>+ 42 days | Starter/<br>weaned   | Lamb                   | 23% oat straw, 7% alfalfa hay, 40.6%maize, 15.6% wheat<br>bran, 9% SBM, 1.75% stone powder                                   | 0% hay          | Mash               | TMR           |
| 38    | Xue et al. (2021)        | 26.80 ± 0.32               | around 180 days | approx. 180<br>days<br>+ 60 days | Starter/<br>weaned   | Lamb                   | 30% mashed grain and 70% roughage                                                                                            | 0% hay          | Mash               | TMR           |
| 39    | Minatchy et al. (2020)   | 35.3 ± 1.59                | 1 years         | 1 years<br>+ 28 days             | Finisher             | Black<br>Belly<br>rams | Dichanthium spp. hay distributed ad libitum, combined with 500 g (dry matter) of green or pelleted cassava foliage           | 0% hay          | Mash               | Grass         |
| 40    | Minatchy et al. (2020)   | 35.3 ± 1.59                | 1 years         | 1 years<br>+ 28 days             | Finisher             | Black<br>Belly<br>rams | Dichanthium spp. hay distributed ad libitum, combined with 500 g (dry matter) of green or pelleted cassava foliage           | 0% hay          | Mash               | Grass         |
| 41    | Dahlan et al. (2000)     | $20.5 \pm 0.5$             | 7-8 months      | NA                               | Finisher             | Goats                  | Oil palm frond                                                                                                               | NA              | Chopper            | Grass         |
| 42    | de Vega et al. (2000)    | $33.8 \pm 0.52$            | 11 months       | NA                               | Finisher             | Ewes                   | Lucerne hay                                                                                                                  | NA              | Chopper            | Grass         |
| 43    | de Vega et al. (2000)    | $33.8 \pm 0.52$            | 11 months       | NA                               | Finisher             | Ewes                   | Lucerne hay                                                                                                                  | NA              | Chopper            | Grass         |
| conti | inued on the next page   |                            |                 |                                  |                      |                        |                                                                                                                              |                 |                    |               |

| 4.Hejazi et al. (1999)23 ± 1.0NAGrowerEwes89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)24 ± 1.0NANAGrowerEwes89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)25 ± 1.0NANAGrowerEwes89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)26 ± 1.0NANAGrowerEwes89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)26 ± 1.0NANAFinisherRan89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)24 ± 1.0NANAFinisherRan89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)25 ± 1.0NANAFinisherRan89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)25 ± 1.0NANAFinisherRan89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)25 ± 1.0NANAFinisherRan89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA4.Hejazi et al. (1999)25 ± 1.0NANAFinisherRan89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA5.Hejazi et al. (1999)26 ± 1.0NANAFinisherRan89.4% maizer 10% peanut or soybean hulls, 4% SBM, 2% NA5.Hejazi et al. (2019)26 ± 1.0                                                                                                                                                                                                                                                            | No. | Study                      | nitial body  | Starting age | Ended age           | Phase    | Animal | Grain source and level Hav level                                       | Unpellete | d TMR/   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|--------------|--------------|---------------------|----------|--------|------------------------------------------------------------------------|-----------|----------|
| 44         Hejazi et al. (1999)         24±1.0         NA         Grower         Ewes         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           45         Hejazi et al. (1999)         25±1.0         NA         Rves         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           46         Hejazi et al. (1999)         25±1.0         NA         Rves         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           47         Hejazi et al. (1999)         24±1.0         NA         Finisher         Rves         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           48         Hejazi et al. (1999)         24±1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           49         Hejazi et al. (1999)         25±1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           41         Hejazi et al. (1999)         25±1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           43         Hejazi et al. (1999)         25±1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           44         Hejazi et al. (1999)         25±1.0         NA         Finisher         Ram                                  |     | W                          | reight, kg   |              |                     |          |        |                                                                        | form      | Grass    |
| 45Hejazi et al. (1999) $Z3 \pm 10$ NANAEves80 4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA46Hejazi et al. (1999) $Z6 \pm 10$ NANARMsBiood meal. 2% CGM47Hejazi et al. (1999) $Z6 \pm 10$ NANAFinisherFamsB04 maize. 10% peanut or soybean hulls. 4% SBM. 2% NA48Hejazi et al. (1999) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA49Hejazi et al. (1999) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA49Hejazi et al. (1999) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA40Hejazi et al. (1999) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA41Hejazi et al. (1999) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA51Inomson and Cammell (1979) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA52Inomson and Cammell (1979) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA53Ishaq et al. (2019) $Z6 \pm 10$ NANAFinisherRamB4 % maize. 10% peanut or soybean hulls. 4% SBM. 2% NA53Ishaq et al. (2019) $Z0 \pm 5$ NADuration 14 Finisher <td< td=""><td>44</td><td>Hejazi et al. (1999)</td><td>24 ± 1.0</td><td>NA</td><td>NA</td><td>Grower</td><td>Ewes</td><td>89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA</td><td>Whole</td><td>TMR</td></td<> | 44  | Hejazi et al. (1999)       | 24 ± 1.0     | NA           | NA                  | Grower   | Ewes   | 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA                | Whole     | TMR      |
| 45Hejazi et al. (1999) $25 \pm 1.0$ NANAGrowerEwes $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA46Hejazi et al. (1999) $26 \pm 1.0$ NANAGrowerEwes $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA47Hejazi et al. (1999) $24 \pm 1.0$ NANAFinisherRames $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA48Hejazi et al. (1999) $24 \pm 1.0$ NANAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA49Hejazi et al. (1999) $25 \pm 1.0$ NANAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA40Hejazi et al. (1999) $25 \pm 1.0$ NANAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA41Hejazi et al. (1999) $25 \pm 1.0$ NANAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA42Hejazi et al. (1999) $26 \pm 1.0$ NAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA50Thornson and Cammell (1979) $26 \pm 1.0$ NAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA51Ishaq et al. (2019) $26 \pm 1.0$ NAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA52Ishaq et al. (2019) $30 \pm 5$ NAFinisherRam $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA53Ishaq et al. (2019)                                                                                                                                                      |     |                            |              |              |                     |          | lambs  | blood meal, 2% CGM                                                     | shelled   |          |
| 45       Hejazi et al. (1999)       25 ± 1.0       NA       Grower       Ewes       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         46       Hejazi et al. (1999)       26 ± 1.0       NA       Rves       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         47       Hejazi et al. (1999)       24 ± 1.0       NA       Finisher       Rens       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         48       Hejazi et al. (1999)       25 ± 1.0       NA       NA       Finisher       Ran       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         49       Hejazi et al. (1999)       25 ± 1.0       NA       NA       Finisher       Ran       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         49       Hejazi et al. (1999)       25 ± 1.0       NA       NA       Finisher       Ran       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         40       Hejazi et al. (1999)       25 ± 1.0       NA       NA       Finisher       Ran       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         50       Thomson and Cammel (1979)       25 ± 1.0       NA       Finisher       Ran       B9.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         51       Ishaq et al. (2019)       26 ± 1.0       NA       Earn       B0.4% maize, 1                                                                         |     |                            |              |              |                     |          |        |                                                                        | maize     |          |
| ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage <th< td=""><td>45</td><td>Hejazi et al. (1999)</td><td>25 ± 1.0</td><td>NA</td><td>NA</td><td>Grower</td><td>Ewes</td><td>89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA</td><td>Whole</td><td>TMR</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45  | Hejazi et al. (1999)       | 25 ± 1.0     | NA           | NA                  | Grower   | Ewes   | 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA                | Whole     | TMR      |
| 46Hejazi et al. (1999) $26 \pm 1.0$ NANAGrowerEwesBood meal. 2% CGM47Hejazi et al. (1999) $24 \pm 1.0$ NANAFinisherRam89.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA48Hejazi et al. (1999) $24 \pm 1.0$ NANAFinisherRam89.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA49Hejazi et al. (1999) $25 \pm 1.0$ NANAFinisherRam89.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA50Thomson and Cammell (1979) $26 \pm 1.0$ NANAFinisherRam89.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA51Ishaq et al. (2019) $26 \pm 1.0$ NANAFinisherRam89.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA52Ihomson and Cammell (1979) $26 \pm 1.0$ NANAFinisherRam89.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA53Ishaq et al. (2019) $26 \pm 1.0$ NANAFinisherRam89.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA54Ishaq et al. (2019) $26 \pm 1.0$ NANAFinisherRamS0.4% maize. 10% peanut or soybean hulls. 4% SBM. 2% NA55Ishaq et al. (2019) $20 \pm 5$ NADuration 14FinisherSheapAffalfa hay55Ishaq et al. (2019) $30 \pm 5$ NADuration 14FinisherSheapAffalfa hay56Bu et al. (2021) $26.83 \pm 0.26$ ModDuration 14FinisherSheap                                                                                                                                                                                                                                                         |     |                            |              |              |                     |          | lambs  | blood meal, 2% CGM                                                     | shelled   |          |
| 46         Hejazi et al. (1999)         26 ± 1.0         NA         Rower         Ewes         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           47         Hejazi et al. (1999)         24 ± 1.0         NA         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           48         Hejazi et al. (1999)         25 ± 1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           49         Hejazi et al. (1999)         25 ± 1.0         NA         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           49         Hejazi et al. (1999)         25 ± 1.0         NA         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           40         Hejazi et al. (1999)         26 ± 1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           40         Hejazi et al. (1999)         26 ± 1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           51         Ishoad meal, 2% CGM         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           52         Ishoad meal, 2019         28 ± 1.0         NA                               |     |                            |              |              |                     |          |        |                                                                        | maize     |          |
| Image         Image         Iood meal         2% CGM           47         Hejazi et al. (1999)         24 ± 1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           48         Hejazi et al. (1999)         25 ± 1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           49         Hejazi et al. (1999)         25 ± 1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           50         Thomson and Cammell (1979)         25 ± 1.0         NA         Finisher         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           51         Ishaq et al. (2019)         26 ± 1.0         NA         Ram         89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA           52         Ishaq et al. (2019)         29 ± 5         NA         Embe         Incerne hay         NA           52         Ishaq et al. (2019)         30 ± 5         NA         Lamb         Lucerne hay         NA           53         Ishaq et al. (2019)         30 ± 5         NA         Lamb         Lucerne hay         NA           54         Bu et al. (2021)         30 ± 5         NA         Lamb         Lucerne hay                                                                                           | 46  | Hejazi et al. (1999)       | 26 ± 1.0     | NA           | NA                  | Grower   | Ewes   | 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA                | Whole     | TMR      |
| 47       Hejazi et al. (1999)       24 ± 1.0       NA       Finisher       Rams       89.4% maize. 10% peanut or soybean hulls, 4% SBM. 2% NA         48       Hejazi et al. (1999)       25 ± 1.0       NA       Finisher       Ram       89.4% maize. 10% peanut or soybean hulls, 4% SBM. 2% NA         49       Hejazi et al. (1999)       26 ± 1.0       NA       Finisher       Ram       89.4% maize. 10% peanut or soybean hulls, 4% SBM. 2% NA         50       Thomson and Cammell (1979)       26 ± 1.0       NA       Finisher       Ram       89.4% maize. 10% peanut or soybean hulls, 4% SBM. 2% NA         51       Ishaq et al. (2019)       26 ± 1.0       NA       Finisher       Ram       89.4% maize. 10% peanut or soybean hulls, 4% SBM. 2% NA         52       Ishaq et al. (2019)       28 ± 5       NA       Errower       Lamb       Incerne hay         53       Ishaq et al. (2019)       30 ± 5       NA       Duration 14< Finisher                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                            |              |              |                     |          | lambs  | blood meal, 2% CGM                                                     | shelled   |          |
| 47       Hejazi et al. (1999)       24 ± 1.0       NA       NA       Finisher       Ram       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         48       Hejazi et al. (1999)       25 ± 1.0       NA       Ram       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         49       Hejazi et al. (1999)       25 ± 1.0       NA       NA       Finisher       Ram       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         50       Thomson and Cammell (1979)       26 ± 1.0       NA       NA       Finisher       Ram       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         51       Ishag et al. (2019)       26 ± 1.0       NA       NA       Finisher       Ram       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         52       Ishag et al. (2019)       29 ± 5       NA       Duration 14       Finisher       Sheep       Affafa hay       NA         53       Ishag et al. (2019)       29 ± 5       NA       Duration 14       Finisher       Sheep       Affafa hay       NA         53       Ishag et al. (2019)       30 ± 5       NA       Duration 14       Finisher       Sheep       Affafa hay       NA         54       Bu et al. (2019)       30 ± 5       NA       Duration 14       Finisher                                                                                                                                       |     |                            |              |              |                     |          |        |                                                                        | maize     |          |
| 48Hejazi et al. (1999) $25 \pm 1.0$ NAFinisherRam $89.4\%$ maize, 10% peanut or soybean hulls, 4% SBM, 2% NA49Hejazi et al. (1999) $26 \pm 1.0$ NAFinisherRam $89.4\%$ maize, 10% peanut or soybean hulls, 4% SBM, 2% NA50Thomson and Cammell (1979) $26 \pm 1.0$ NAFinisherRam $89.4\%$ maize, 10% peanut or soybean hulls, 4% SBM, 2% NA51Ishaq et al. (2019) $26 \pm 1.0$ NARam $89.4\%$ maize, 10% peanut or soybean hulls, 4% SBM, 2% NA53Ishaq et al. (2019) $29 \pm 5$ NADuration 14FinisherSheepAffalfa hay53Ishaq et al. (2019) $30 \pm 5$ NADuration 14FinisherSheepAffalfa hayNA54Bu et al. (2021) $26.33 \pm 0.26$ 6 monthsDuration 6GrowerLoreAndNA54Bu et al. (2021) $26.33 \pm 0.26$ 6 monthsDuration 6GrowerAndNaNa54Bu et al. (2021) $26.33 \pm 0.26$ 6 monthsDuration 6GrowerAndNaNa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47  | Hejazi et al. (1999)       | $24 \pm 1.0$ | NA           | NA                  | Finisher | Ram    | 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA                | Whole     | TMR      |
| 48Hejazi et al. (1999) $25 \pm 1.0$ NAFinisherRam<br>Iambs $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA49Hejazi et al. (1999) $26 \pm 1.0$ NANAFinisherRam<br>Ram $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA50Thomson and Cammell (1979) $26 \pm 1.0$ NANAFinisherRam<br>Ram $89.4\%$ maize. 10% peanut or soybean hulls. 4% SBM. 2% NA51Ishaq et al. (2019) $26 \pm 1.0$ NANALucerne hayNA52Ishaq et al. (2019) $30 \pm 5$ NADuration 14 <finisher< td="">SheepAffalfa hayNA53Ishaq et al. (2019)<math>30 \pm 5</math>NADuration 14<finisher< td="">SheepAffalfa hayNA54Bu et al. (2021)<math>26.83 \pm 0.26</math>6 monthsDuration 60GrowerLamNafore factanNA64xsDuration 60GrowerLamNafore factanNafore factanNA</finisher<></finisher<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                            |              |              |                     |          | lambs  | blood meal, 2% CGM                                                     | shelled   |          |
| <ul> <li>Hejazi et al. (1999) 25 ± 1.0 NA Finisher Ram 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA amb blood meal, 2% CGM</li> <li>Hejazi et al. (1999) 26 ± 1.0 NA NA Finisher Ram 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA blood meal, 2% CGM</li> <li>Thomson and Cammell (1979) 26 ± 1.0 NA Finisher Ram 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA blood meal, 2% CGM</li> <li>Ishaq et al. (2019) 29 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> </ul>                           |     |                            |              |              |                     |          |        |                                                                        | maize     |          |
| 49Hejazi et al. (1999) $26 \pm 1.0$ NAFinisherRam89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA50Thomson and Canmell (1979) $26 \pm 1.0$ NANAFinisherRam89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA51Ishaq et al. (2019) $29 \pm 5$ NAGrowerLambLucerne hayNA52Ishaq et al. (2019) $30 \pm 5$ NADuration 14FinisherSheepAffafta hayNA53Ishaq et al. (2019) $30 \pm 5$ NADuration 14FinisherSheepAffafta hayNA53Ishaq et al. (2019) $30 \pm 5$ NADuration 14FinisherSheepAffafta hayNA54Bu et al. (2011) $26.83 \pm 0.26$ 6 monthsDuration 60GrowerLambNative grassland, steppe floraNA54Bu et al. (2021) $26.83 \pm 0.26$ 6 monthsDuration 60GrowerLambNative grassland, steppe floraNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48  | Hejazi et al. (1999)       | $25 \pm 1.0$ | NA           | NA                  | Finisher | Ram    | 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA                | Whole     | TMR      |
| 49       Hejazi et al. (1999)       26 ± 1.0       NA       NA       Finisher       Ram       89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA         50       Thomson and Cammell (1979)       29 ± 5       NA       Grower       Lamb       Lucerne hay       NA         51       Ishaq et al. (2019)       29 ± 5       NA       Duration 14 Finisher       Sheep       Affalfa hay       NA         52       Ishaq et al. (2019)       30 ± 5       NA       Duration 14 Finisher       Sheep       Affalfa hay       NA         53       Ishaq et al. (2019)       30 ± 5       NA       Duration 14 Finisher       Sheep       Affalfa hay       NA         53       Ishaq et al. (2019)       30 ± 5       NA       Duration 14 Finisher       Sheep       Affalfa hay       NA         54       Bu et al. (2021)       26.83 ± 0.26       6 months       Duration 60 Grower       Lamb       Native grassland, steppe flora       NA         6days       Duration 60 Grower       Lamb       Native grassland, steppe flora       NA                                                                                                                                                                                                                                                                                                                                                                            |     |                            |              |              |                     |          | lambs  | blood meal, 2% CGM                                                     | shelled   |          |
| 49Hejazi et al. (1999) $26 \pm 1.0$ NAFinisherRam89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA50Thomson and Cammell (1979) $26 \pm 5$ NA $Biood meal, 2\% CGM$ NA51Ishaq et al. (2019) $29 \pm 5$ NA $Duration 14$ FinisherSheepAffalfa hayNA52Ishaq et al. (2019) $30 \pm 5$ NA $Duration 14$ FinisherSheepAffalfa hayNA53Ishaq et al. (2019) $30 \pm 5$ NA $Duration 14$ FinisherSheepAffalfa hay53Ishaq et al. (2019) $30 \pm 5$ NA $Duration 14$ FinisherSheepAffalfa hay54Bu et al. (2021) $26.83 \pm 0.26$ 6 months $Duration 60$ GrowerLambNafive grassland, steppe floraNA54Bu et al. (2021) $26.83 \pm 0.26$ 6 months $Duration 60$ GrowerLambNafive grassland, steppe floraNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                            |              |              |                     |          |        |                                                                        | maize     |          |
| 50Thomson and Cammell (1979)EarthowLucerne hayNA51Ishaq et al. (2019) $29 \pm 5$ NADuration 14 FinisherSheepAffafa hayNA52Ishaq et al. (2019) $30 \pm 5$ NADuration 14 FinisherSheepAffafa hayNA53Ishaq et al. (2019) $30 \pm 5$ NADuration 14 FinisherSheepAffafa hayNA53Ishaq et al. (2019) $30 \pm 5$ NADuration 14 FinisherSheepAffafa hayNA54Bu et al. (2021) $26.83 \pm 0.26$ 6 monthsDuration 60 GrowerLambNative grassland, steppe floraNA6avsAdvsDuration 60 GrowerLambNative grassland, steppe floraNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49  | Hejazi et al. (1999)       | 26 ± 1.0     | NA           | NA                  | Finisher | Ram    | 89.4% maize, 10% peanut or soybean hulls, 4% SBM, 2% NA                | Whole     | TMR      |
| 50Thomson and Cammell (1979) $GrowerLambLucerne hayNA51Ishaq et al. (2019)29 \pm 5NADuration 14FinisherSheepAlfalfa hayNA52Ishaq et al. (2019)30 \pm 5NADuration 14FinisherSheepAlfalfa hayNA53Ishaq et al. (2019)30 \pm 5NADuration 14FinisherSheepAlfalfa hayNA54Bu et al. (2021)26.83 \pm 0.266 monthsDuration 60GrowerLambNative grassland, steppe floraNA54Bu et al. (2021)26.83 \pm 0.266 monthsDuration 60GrowerLambNative grassland, steppe floraNA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                            |              |              |                     |          | lambs  | blood meal, 2% CGM                                                     | shelled   |          |
| 50Thomson and Cammell (1979)CowerLambLucerne hayNA51Ishaq et al. (2019) $29 \pm 5$ NADuration 14FinisherSheepAlfalfa hayNA52Ishaq et al. (2019) $30 \pm 5$ NADuration 14FinisherSheepAlfalfa hayNA53Ishaq et al. (2019) $30 \pm 5$ NADuration 14FinisherSheepAlfalfa hayNA54Bu et al. (2021) $26.83 \pm 0.26$ 6 monthsDuration 60GrowerLambNative grassland, steppe floraNA54Bu et al. (2021) $26.83 \pm 0.26$ 6 monthsDuration 60GrowerLambNative grassland, steppe floraNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                            |              |              |                     |          |        |                                                                        | maize     |          |
| 51Ishaq et al. (2019) $29 \pm 5$ NADuration 14 FinisherSheepAlfalfa hayNA52Ishaq et al. (2019) $30 \pm 5$ NADuration 14 FinisherSheepAlfalfa hayNA53Ishaq et al. (2019) $30 \pm 5$ NADuration 14 FinisherSheepAlfalfa hayNA54Bu et al. (2021) $26.83 \pm 0.26$ 6 monthsDuration 60 GrowerLambNative grassland, steppe floraNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50  | Thomson and Cammell (1979) |              |              |                     | Grower   | Lamb   | Lucerne hay NA                                                         | Chopper   | grass    |
| 52Ishaq et al. (2019) $30 \pm 5$ NADuration 14 FinisherSheepAlfalfa hayNA53Ishaq et al. (2019) $30 \pm 5$ NADuration 14 FinisherSheepAlfalfa hayNA54Bu et al. (2021) $26.83 \pm 0.26$ 6 monthsDuration 60 GrowerLambNative grassland, steppe floraNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51  | Ishaq et al. (2019)        | 29 ± 5       | NA           | Duration 14         | Finisher | Sheep  | Alfalfa hay NA                                                         | Loose ha  | / grass  |
| <ul> <li>52 Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>53 Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay</li> <li>54 Bu et al. (2021) 26.83 ± 0.26 6 months Duration 60 Grower Lamb Native grassland, steppe flora</li> <li>NA</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                            |              |              | days                |          |        |                                                                        |           |          |
| 53 Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay NA<br>days 54 Bu et al. (2021) 26.83 ± 0.26 6 months Duration 60 Grower Lamb Native grassland, steppe flora NA<br>days of Xilinhot Inner Monordian Plateau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52  | Ishaq et al. (2019)        | $30 \pm 5$   | NA           | Duration 14         | Finisher | Sheep  | Alfalfa hay NA                                                         | Loose ha  | / grass  |
| 53 Ishaq et al. (2019) 30 ± 5 NA Duration 14 Finisher Sheep Alfalfa hay NA<br>days 54 Bu et al. (2021) 26.83 ± 0.26 6 months Duration 60 Grower Lamb Native grassland, steppe flora NA<br>davs cf Xilinhot Inner Moncolian Plateau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                            |              |              | days                |          |        |                                                                        |           |          |
| 54 Bu et al. (2021) 26.83 ± 0.26 6 months Duration 60 Grower Lamb Native grassland, steppe flora NA<br>days of Xilinhot Inner Monrolian Plateau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53  | Ishaq et al. (2019)        | 30 ± 5       | NA           | Duration 14         | Finisher | Sheep  | Affalfa hay NA                                                         | Loose ha  | / grass  |
| 54 Bu et al. (2021) 26.83 ± 0.26 6 months Duration 60 Grower Lamb Native grassland, steppe flora NA<br>davs of Xilinhot Inner Moncolian Plateau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                            |              |              | adaa                |          |        |                                                                        |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54  | Bu et al. (2021) 2         | 6.83 ± 0.26  | 6 months     | Duration 60<br>days | Grower   | Lamb   | Native grassland, steppe flora<br>of Xilinhot, Inner Mongolian Plateau | Dried gra | ss grass |



Figure 1. Flow chart of the literature selection process according to PRISMA protocols

Relevant data (Table 1) from each study were extracted into a spreadsheet using predefined criteria, including study type (randomized controlled studies), key experimental parameters (number of animals per treatment, age at the beginning of the study, duration of study), feed characteristics such as physical parameters (pelleted, mash, textured, chopped) and feed type (mix ration, 100% forage source). The test diets were as follows:

- "pelleted" a form of ground complete feed that is mixed and then forced through a die to form elongated rods,
- "unpelleted" divided into:
  - mash form a complete feed that is finely ground and mixed,
  - textured form a form of complete feed consisting of grains (whole, steamed flaked, rolled or cracked) combined with a pelleted supplement,
  - chopped form cut pieces of grass.

#### **Statistical analysis**

The effect size as Hedges' (d) was applied to quantify the parameter distance between pelleted and unpelleted feed products. This method was selected for its ability to calculate the effect size regardless of the heterogeneity in sample size, measurement unit, and statistical test results, as well as its suitability for estimating the effect of paired treatments (Sanchez-Meca and Marin-Martinez, 2010). The unpelleted group was pooled into a control group (C) and the pelleted group was combined into an experimental group (E). The effect size (d) was calculated as follows:

$$d = \frac{(X^{E} - X^{C})}{S} J,$$

where:  $X^{E}$  – mean value from the experimental group and  $X^{C}$  – mean value of the control group. Therefore, a positive effect size indicates that the observed parameter is greater in the unpelleted group and vice versa. *J* is the correction factor for small sample size, i.e.:

$$V = 1 - \frac{3}{(4(N^{C} + N^{E} - 2) - 1)^{2}}$$

and S is the pooled standard deviation, defined as:

$$S = \sqrt{\frac{(N^{E} - 1) (S^{E})^{2} + (N^{C} - 1) ((S^{C})^{2})}{(N^{E} + N^{C} - 2}}$$

where:  $N^E$  – sample size of the experimental group,  $N^c$  – sample size of the control group,  $S^E$  – standard deviation of the experimental group,  $S^C$  – standard deviation of the control group. The variance of Hedges' d (v<sub>d</sub>) is described as follows:

$$V_{d} = \frac{(N^{C} + N^{E})}{(N^{C} N^{E})} + \frac{d^{2}}{(2 (N^{C} + N^{E}))};$$

The cumulative effect size  $(d_{++})$  was formulated as follows:

$$d_{++} = \frac{(\sum_{i=1}^{n} W_i d_i)}{(\sum_{i=1}^{n} W_i)}$$

where:  $W_i$  – inverse of the sampling variance:  $W_i = 1/v_d$ . The precision of the effect size was described using 95% confidence interval (CI), i.e.  $d \pm (1.96 \times sd)$ . All the above equations were derived from the study of Sanchez-Meca and Marin-Martinez (2010). The calculated effect size was statistically significant if CI did not reach a null

effect size. A fail-safe number ( $N_{fs}$ ) was calculated to identify publication bias caused by non-significant studies, which were not included in the analysis. Nfs > 5N + 10 was considered to provide evidence of a robust meta-analysis model.  $N_{fs}$  was calculated using the method of Rosenthal et al. (1979). The smallest sample size from individual studies was applied as N. Cohen's benchmarks were used as standard judgment borders for effect size assessment. These benchmarks were: 0.2 for small, 0.5 for medium and 0.8 for large effect size. All of the above effect size-related calculations were performed using OpenMEE 2.0.

## Results

#### **Profile of selected studies**

Due to conflicting research findings and small sample size, not all results can be considered reliable due to publication bias. Briefly, the fail-safe number (Nfs) indicates which studies are suitable to be included into the final strong conclusions. This number expresses how many sample study sizes should be added in order to change the initial effect size into a negligible variable. If Nfs > 5N + 10, where N is the study effect size used to calculate the initial effect size, then the result can be considered as the final robust conclusion (Rosenthal, 1979). According to these fail-safe number rules, robust parameters include average daily gain (ADG), dry matter intake (DMI), dry matter digestion (DM digestion), organic matter digestion (OM digestion) and neutral detergent fiber digestion (NDF digestion), while crude protein digestion (CP digestion) and acid detergent fiber digestion (ADF digestion) are among non-robust result parameters.

#### Pelleted vs unpelleted feed form

Figure 2 summarizes the results of metaanalysis, which showed that the pelleted feed form



Figure 2. Forest plot of the effects of pelleted and unpelleted feed forms on production performance and nutrient digestibility of small ruminants

increased dry matter intake and average daily gain (P < 0.05) of small ruminants compared to the unpelleted form. On the other hand, pelleted feed decreased dry matter digestion and organic and fiber percentage (P < 0.05). For crude protein digestion, no significant effect of the pelleted process was observed. Table 2 shows the detailed meta-analysis results for seven parameters. Figure 2 shows summary of meta-analysis result that pelleted feed form enhances dry matter intake and average daily gain (P < 0.05) of small ruminants in comparison to the un-pelleted form. The result also indicated that dry matter intake and average daily gain were significantly higher for pelleted feed compared to the unpelleted form, with a large size effect, i.e.  $1.51 \pm 0.42$ . On the other hand, the pelleted feed form decreased dry matter digestion, as well as organic and fiber percentage (P < 0.05). The results also demonstrated that these parameters were significantly lower when pelleted feed was applied in comparison to the unpelleted form, with a large size effect, i.e.  $1.07 \pm 0.64$ . Crude protein digestion was not significantly affected by the pelleted process. Table 2 shows detail meta-analysis results for seven parameters tested according to Cohen's methodology.

Table 2. Meta-analysis of the effect of pelleted and unpelleted feeding on production performance and nutrient digestibility of small ruminants

| No | Response variables | Doc | Unit  | Ν  | Estimate | Lower bound | Upper bound | SE    | P-value | $\tau^2$ | Q       | Het P-value | <b> </b> <sup>2</sup> |
|----|--------------------|-----|-------|----|----------|-------------|-------------|-------|---------|----------|---------|-------------|-----------------------|
| 1  | ADG                | 25  | g/day | 54 | 0.905    | 0.601       | 1.21        | 0.155 | <0.001  | 0.958    | 353.069 | <0.001      | 84.989                |
| 2  | DMI                | 25  | g/day | 52 | 1.512    | 1.091       | 1.934       | 0.215 | <0.001  | 1.852    | 394.227 | <0.001      | 87.063                |
| 3  | DM digestion       | 18  | %     | 31 | -0.785   | -1.259      | -0.311      | 0.242 | 0.001   | 1.257    | 126.913 | <0.001      | 76.362                |
| 4  | OM digestion       | 16  | %     | 29 | -0.877   | -1.417      | -0.338      | 0.275 | 0.001   | 1.566    | 125.296 | <0.001      | 77.653                |
| 5  | CP digestion       | 14  | %     | 20 | 0.1      | -0.432      | 0.631       | 0.271 | 0.714   | 0.974    | 75.628  | <0.001      | 74.877                |
| 6  | NDF digestion      | 14  | %     | 24 | -1.073   | -1.707      | -0.438      | 0.324 | <0.001  | 1.769    | 122.156 | <0.001      | 81.172                |
| 7  | ADF digestion      | 10  | %     | 18 | -0.865   | -1.606      | -0.123      | 0.378 | 0.022   | 1.942    | 100.792 | <0.001      | 83.134                |

Doc – document, N – number of data, SE – standard error,  $\tau^2$  – variance of the effect size parameters across the study populations, Q – weighted sum of squared deviations, Het *P*-value – *P*-value for heterogeneity, I<sup>2</sup> – heterogeneity level between studies, ADG – average daily gain, DMI – dry matter intake, DM digestion – dry matter digestion, OM digestion – organic matter digestion, CP digestion – crude protein digestion, NDF digestion – neutral detergent fiber digestion – acid detergent fiber digestion

#### Discussion

Effect on production performance of small ruminants. This meta-analysis review evaluated the influence of pelleted and unpelleted forms on the performance and digestion of small ruminants. At the level of feed intake and average daily gain (ADG), small ruminants showed a significant response to feeding in pellets compared to the unpelleted form. Figure 2 shows forest plots regarding the impact of pelleted and unpelleted feed forms on starter feed intake and ADG in small ruminants across the studies included in the analysis.

The results of meta-analysis showed that administering the pelleted form increased feed intake in small ruminants compared to unpelleted feed. The process of pellet production begins with grinding of raw materials, whereby the fragmentation physically reduces the particle size of the material, while increasing the grain surface area, and facilitating the access of amylolytic microbes to starch granules, resulting in enhanced starch digestion in the rumen (Bateman et al., 2009).

A study by Ghaffari and Kertz (2021) showed that calves fed a textured starter feed mixed with hay had an increased intake by 87 g/h compared to a fine feed mixed with grass; however, ADG did not change. High levels of NDF in feed also contribute significantly to filling the digestive tract (gut) (Stobo et al., 1966; Jahn and Chandler, 1976). Ghaffari and Kertz (2021) reported that calves fed a textured feed mixed with hay showed a higher NDF intake with each bite and increased intestinal contents than calves fed textured feed alone, resulting in reduced feed intake. The increase in ADG by providing forage in the calf starter feed is due to an increase in intestinal filling (Hill et al., 2008; Mirzaei et al., 2015).

In addition, Li et al. (2021) found that sheep fed TMR in pellets produced higher ADG than without pellets, and the same results were also reported by Coufal-Majewski et al. (2017), Zhong et al. (2018) and Zhang et al. (2019). Growth performance is strongly dependent on total feed intake and the amount of nutrients animals can utilise per unit of feed. The increase in dry matter intake was mainly due to a reduction in rumen content in response to pelleting, which allowed higher feed intake to achieve satiety. The increased feed intake could explain the enhanced growth performance. According to Li et al. (2021), sheep fed pellets had higher body weight and carcass weight than those fed without pellets. This may be due to higher feed intake, leading to better growth performance of sheep administered pelleted feed.

Effect on nutrient digestibility of small rumi**nants.** Feeding pellets did not affect the digestibility of either dry matter, organic matter or crude protein. The pelleted feed increase the number of gelatinized starch granules during the heating process and their palatability (Waigh et al., 2000; Crochet et al., 2005). In the process pelletisation, the feed mixture is heated at 75-87 °C for 15-20 s in a conventional conditioner, and this processing increases the gelatinized starch content (Soltani et al., 2020). Starter pellets do not have the appropriate particle size to stimulate mastication and rumination. Porter et al. (2007) found that calves fed starters with cracked maize and crushed wheat at an earlier age spent more time ruminating compared to animals fed milled and pelleted grains, resulting in a higher rumen pH. Li et al. (2021) demonstrated that feeding in the form of pellets resulted in a slight decrease in dry matter digestibility, but the other digestibility parameters were not affected.

No difference in digestibility was also reported by Zhang et al. (2019) and Coufal-Majewski et al. (2017). Moreover, Zhong et al. (2018) found that the digestibility of crude protein (CP), acid detergent fiber (ADF), ether extract (EE) and starch slightly increased in animals fed pellets, while the digestibility of dry matter (DM) and neutral detergent fiber (NDF) remained unchanged. Karimizadeh et al. (2017) reported that feed pelletisation increased digestibility of DM and ADF. Pelleted feed affects the digestibility of nutrients because the manufacturing process involving changes in temperature, time and water content have an effect on nutrient degradation (Bertipaglia et al., 2010; Castrillo et al., 2013; Ran et al., 2020). Pellets applied in various studies may be one of the reasons for the observed differences in digestibility response. In addition, differences in sheep breed, age, and sex across studies could be another reason. However, differences in digestibility and increased feed intake may be the main cause of improved growth performance.

Rumen pH is an important fermentation parameter influenced by various factors, including feed processing (Plaizier et al., 2018). Lower pH in sheep fed TMR in the form of pellets resulted in a faster feeding process (Karimizadeh et al. 2017) and increased feed intake (Karimizadeh et al., 2017; Zhong et al., 2018; Zhang et al., 2019). More feed ingested in a short period of time provides more substrate for the metabolism of rumen microorganisms. This was evidenced by higher concentrations of ammonia and total short chain fatty acids (SCFA) (Zhong et al., 2018). Lower rumen pH and higher total SCFA contents were also observed in pellet-fed cattle (Voelker and Allen, 2003). Although the concentration of SCFA in the study by Zhang et al. (2019) was higher in sheep receiving pelleted feed compared to TMR without pellets, rumen pH was not affected. Rumen pH was within the range required for normal physiological function and did not cause acidosis. Moreover, Li et al. (2021) argued that increasing growth performance would shorten the time required for livestock rearing. In addition, feed in the form of pellets can also reduce feed waste and increase labour efficiency, thereby increasing farmer profits.

## Conclusions

The present meta-analysis have demonstrated that the form of the feed affects performance and digestion of small ruminants. The pelleted form had a positive effect on DMI and ADG and led to increased growth and livestock rearing rate. Interestingly, some digestion parameters were negatively affected by this type of feeding. A further identical meta-analysis may be the best option to evaluate and summarize the comparison of feed forms with respect to other aspects and type of feed processing for ruminants.

## **Funding source**

This study was fully funded by the IPB University.

## **Conflict of interest**

The Authors declare that there is no conflict of interest.

## References

- Abdollahi M.R., Ravindrana V., Svihusb B., 2013. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim. Feed Sci. Technol. 179, 1–23, https://doi. org/10.1016/j.anifeedsci.2012.10.011
- Adesogan A.T., Arriola K.G., Jiang Y., Oyebade A., Paula E., Pech-Cervantes A.A., Romero J.J., Ferraretto L.F., Vyas D., 2019. Symposium review: Technologies for improving fiber utilization. J. Dairy Sci. 102, 5726–5755, https://doi.org/10.3168/ jds.2018-15334
- Amaral C.M.C., Sugohara A., Resende K.T., Machado M.R.F., Cruz C., 2005. Performance and ruminal morphologic characteristics of Saanen kids fed ground, pelleted or extruded total ration. Small Rumin. Res. 58, 47–54, https://doi.org/10.1016/j.smallrumres.2004.08.009

- Awad E.A., Najaa M., Zulaikha Z.A., Zulkifli I., Soleimani A.F., 2020. Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains. Asian-Australas. J. Anim. Sci. 33, 778–787, https://doi.org/10.5713/ajas.19.0208
- Bateman H.G., Hill T.M., Aldrich J.M., Schlotterbeck R.L., 2009. Effects of corn processing, particle size, and diet form on performance of calves in bedded pens. J. Dairy Sci. 92, 782–789, https:// doi.org/10.3168/jds.2008-1242
- Bertipaglia L.M.A., Fondevila M., van Laar H., Castrillo C., 2010. Effect of pelleting and pellet size of a concentrate for intensively reared beef cattle on *in vitro* fermentation by two different approaches. Anim. Feed Sci. Technol. 159, 88–95, https://doi. org/10.1016/j.anifeedsci.2010.05.010
- Bu Z., Ge G., Jia Y., Du S., 2021. Effect of hay with or without concentrate or pellets on growth performance and meat quality of Ujimqin lambs on the Inner Mongolian Plateau. Anim. Sci. J. 92, e13553, https://doi.org/10.1111/asj.13553
- Castrillo C., Mota M., van Laar H., Martín-Tereso J., Gimeno, A., Fondevila, M., Guada, J.A., 2013. Effect of compound feed pelleting and die diameter on rumen fermentation in beef cattle fed high concentrate diets. Anim. Feed Sci. Technol. 180, 34–43, https://doi.org/10.1016/j.anifeedsci.2013.01.004
- Cooper S.D.B., Kyriazakis I., Oldham J.D., 1996. The effects of physical form of feed, carbohydrate source, and inclusion of sodium bicarbonate on the diet selections of sheep. J. Anim. Sci. 74, 1240–1251, https://doi.org/10.2527/1996.7461240x
- Coufal-Majewski S., Stanford K., McAllister T., Wang Y., Blakley B., McKinnon J., Chaves A. V., 2017. Effects of pelleting diets containing cereal ergot alkaloids on nutrient digestibility, growth performance and carcass traits of lambs. Anim. Feed Sci. Technol. 230, 103–113, https://doi.org/10.1016/j.anifeedsci.2017.06.006
- Crochet P., Beauxis-Lagrav, T., Noel T.R., Parker R., Ring S.G., 2005. Starch crystal solubility and starch granule gelatinisation. Carbohydr. Res. 340, 107–113, https://doi.org/10.1016/j. carres.2004.11.006
- Dahlan I., Islam M., Rajion M.A., 2000. Nutrient intake and digestibility of fresh ensiled and pelleted oil palm (Elaeis guineensis) frond by goats. Asian-Australas. J. Anim. Sci. 13, 1407–1413, https://doi.org/10.5713/ajas.2000.1407
- de Vega A., Gasa J., Guada J.A., Castrillo C., 2000. Frequency of feeding and form of lucerne hay as factors affecting voluntary intake, digestibility, feeding behaviour, and marker kinetics in ewes. Aust. J. Agric. Res. 51, 801–809, https://doi. org/10.1071/AR97119
- Du S., You S.H., Bao J., Jia Y.S., Cai Y.M., 2019. Evaluation of the growth performance and meat quality of Mongolian lamb fed grass, hay or pellets of Inner Mongolian native grass. Small Rumin. Res. 181, 34–38, https://doi.org/10.1016/j.smallrumres.2019.10.008
- Economides S., Koumas A., Georghiades E., Hadjipanayiotou M., 1990. The effect of barley-sorghum grain processing and form of concentrate mixture on the performance of lambs, kids and calves. Anim. Feed Sci. Technol. 31, 105–116, https://doi. org/10.1016/0377-8401(90)90117-Q
- Ghaffari M.H., Kertz A.F., 2021. Review : Effects of different forms of calf starters on feed intake and growth rate: A systematic review and Bayesian meta-analysis of studies from 1938 to 2021. AAS 37, 273–293, https://doi.org/10.15232/aas.2021-02150
- Gipson T.A., Goetsch A.L., Detweiler G., Sahlu T., 2007. Effects of feeding method , diet nutritive value and physical form and genotype on feed intake, feeding behavior and growth performance by meat goats. Small Rumin. Res. 71, 170–178, https://doi.org/10.1016/j.smallrumres.2006.06.004

- Hatfield P.G., Hopkins J.A., Pritchard G.T., Hunt C.W., 1997. The effects of amount of whole barley, barley bulk density, and form of roughage on feedlot lamb performance, carcass characteristics, and digesta kinetics. J. Anim. Sci. 75, 3353–3366, https://doi.org/10.2527/1997.75123353x
- He J., Ma L., Qiu J., Lu X., Hou C., Liu B., Yu D., 2020. Effects of compound organic acid calcium on growth performance, hepatic antioxidation and intestinal barrier of male broilers under heat stress. Asian-Australas. J. Anim. Sci. 33, 1156–1166, https:// doi.org/10.5713/ajas.19.0274
- Hejazi S., Fluharty F.L., Perley J.E., Loerch S.C., Lowe G.D., 1999. Effects of corn processing and dietary fiber source on feedlot performance, visceral organ weight, diet digestibility, and nitrogen metabolism in lambs. J. Anim. Sci. 77, 507–515, https://doi.org/10.2527/1999.773507x
- Hill T.M., Bateman H.G., Aldrich J.M., Schlotterbeck R.L., 2008. Effects of the amount of chopped hay or cottonseed hull in a textured calf starter on young calf performance. J. Dairy Sci. 91, 2684–2693, https://doi.org/10.3168/jds.2007-0935
- Ishaq S.L., Lachman M.M., Wenner B.A., Baeza A., Butler M., Gates E., Olivo S., Geddes J.B., Hatfield P., Yeoman C.J., 2019. Pelleted-hay alfalfa feed increases sheep wether weight gain and rumen bacterial richness over loose-hay alfalfa feed. PLOS ONE 14, e0215797, https://doi.org/10.1371/journal. pone.0215797
- Jahn E., Chandler P.T., 1976. Performance and nutrient requirements of calves fed varying percentages of protein and fiber. J. Anim. Sci. 42, 724–735, https://doi.org/10.2527/ jas1976.423724x
- Karimizadeh E., Chaji M., Mohammadabadi T., 2017. Effects of physical form of diet on nutrient digestibility, rumen fermentation, rumination, growth performance and protozoa population of finishing lambs. Anim. Nutr. 3, 139–144, https://doi. org/10.1016/j.aninu.2017.01.004
- Lailer P.C., Dahiya S.S., Lal D., Chauhan T.R., 2005. Complete feed for livestock concept, present status and future trend: A review. Indian J. Anim. Sci. 75, 84–91
- Li B., Sun X., Huo Q. et al., 2021. Pelleting of a total mixed ration affects growth performance of fattening lambs. Front. Vet. Sci. 8, 629016, https://doi.org/10.3389/fvets.2021.629016
- Malik M.I., Rashid M.A., Yousaf M.S., Naveed S., 2020. Effect of physical form and level of wheat straw inclusion on growth performance and blood metabolites of fattening goat, Animals 10, 1861, https://doi.org/10.3390/ani10101861
- Malik M.I., Rashid M.A., Yousaf M.S., Naveed S., Javed K., Nauman K., Rehman H.U., 2021. Rumen morphometry and sorting behavior of fattening male goat fed pelleted and unpelleted TMR with two levels of wheat straw. Small Rumin. Res. 196, 106316, https://doi.org/10.1016/j.smallrumres.2021.106316
- Minatchy N., Marie-magdeleine C., Calif V., Félicité Y., Periacarpin F., Deloumeau C., Pommier F., Archimède H., 2020. Dichanthium hay combined with green cassava foliage or pelleted cassava foliage as fed for Black Belly rams. Trop. Anim. Health Prod. 52, 583–589, https://doi.org/10.1007/s11250-019-02045-3
- Mirzaei M., Khorvash M., Ghorbani G.R., Kazemi-Bonchenari M., Riasi A., Nabipour A., van den Borne J.J.G.C., 2015. Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves. J. Anim. Physiol. Anim. Nutr. 99, 553–564, https://doi. org/10.1111/jpn.12229
- Plaizier J.C., Mesgaran M.D., Derakhshani H., Golder H., Khafipour E., Kleen J.L., 2018. Review: Enhancing gastrointestinal health in dairy cows. Animal 12, s399–s418, https://doi.org/10.1017/ S1751731118001921

- Porter J.C., Warner R.G., Kertz A.F., 2007. Effect of fiber level and physical form of starter on growth and development of dairy calves fed no forage. Prof. Anim. Sci. 23, 395–400, https://doi. org/10.15232/S1080-7446(15)30994-3
- Raju J., Narasimha J., Kumari N.N., Raghunanadan T., Preetam V.C., Kumar A.A., Reddy P.R.K., 2021. Feeding value of sorghum stover fed to tropical hair sheep as complete rations in chop, mash, pellet, and block forms. Vet. World 14, 2273–2281, https://doi.org/10.14202/vetworld.2021.2273-2281
- Ran T., Fang Y., Wang Y.T., Yang W.Z. Niu Y.D., Sun X.Z., Zhong R.Z., 2020. Effects of grain type and conditioning temperature during pelleting on growth performance, ruminal fermentation, meat quality and blood metabolites of fattening lambs. Animal 15, 100146, https://doi.org/10.1016/j.animal.2020.100146
- Reddy P.B., Reddy T.J., Reddy Y.R., 2012. Growth and nutrient utilization in kids fed expander-extruded complete feed pellets containing red gram (*Cajanus cajan*) straw. Asian-Australas. J. Anim. Sci. 25, 1721–1725, https://doi.org/10.5713/ ajas.2012.12395
- Retnani Y., Arman C., Said S., Permana I.G., Saenab A., 2014a. Wafer as feed supplement stimulates the productivity of Bali calves. APCBEE Procedia 8, 173–177, https://doi.org/10.1016/j.apcbee.2014.03.022
- Retnani Y., Permana I.G., Purba L.C., 2014b. Physical characteristic and palatability of biscuit bio-supplement for dairy goat. Pak. J. Biol. Sci. 17, 725–729, https://doi.org/10.3923/ pjbs.2014.725.729
- Rosenthal R., 1979. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641, https://doi. org/10.1037/0033-2909.86.3.638
- Sanchez-Meca J., Marin-Martinez F., 2010. Meta analysis, International Encyclopedia of Education. 3<sup>rd</sup> Edition, Elsevier. Amsterdam (Netherlands) https://doi.org/10.1016/B978-0-08-044894-7.01345-2
- Sauvant D., Schmidely P., Daudin J.J., St-Pierre N.R., 2008. Metaanalyses of experimental data in animal nutrition. Animal 2, 1203–1214, https://doi.org/10.1017/S1751731108002280 https://doi.org/10.1017/S1751731108002280
- Shrinivasa D.J., Mathur S.M., 2020. Compound feed production for livestock. Curr. Sci. 118, 553-559, https://doi.org/10.18520/cs/ v118/i4/553-559
- Soltani E., Naserian A.A., Khan M.A., Ghaffari M.H., Malekkhahi M., 2020. Effects of conditioner retention time during pelleting of starter feed on nutrient digestibility, ruminal fermentation, blood metabolites, and performance of Holstein female dairy calves. J. Dairy Sci. 103, 8910–8921, https://doi.org/10.3168/ jds.2020-18345
- St-Pierre N.R., 2001. Invited review: Integrating quantitative findings from multiple studies using mixed model methodology. J. Dairy Sci. 84, 741–755, https://doi.org/10.3168/jds.S0022-0302(01)74530-4
- Stobo I.J.F., Roy J.H.B., Gaston H.J., 1966. Rumen development in the calf. I. The effect of diets containing different proportions of concentrates to hay on rumen development. Br. J. Nutr. 20, 171–188, https://doi.org/10.1079/BJN19660021
- Tag Eldin H.A., Babiker I.A., Khidir O.A.E., 2011. Feedlot performance of Sudanese desert lambs fed with mash or pelleted diet of varying energy levels. J. Saudi Soc. Agric. Sci. 10, 77–79, https://doi.org/10.1016/j.jssas.2011.03.010
- Thomson D.J., Cammell S.B., 1979. The utilization of chopped and pelleted lucerne (*Medicago sativa*) by growing lambs. Br. J. Nutr. 41, 297–310, https://doi.org/10.1079/BJN19790039

- Tirawattanawanich C., Chantakru S., Nimitsantiwong W., Tongyai S., 2011. The effects of tropical environmental conditions on the stress and immune responses of commercial broilers, Thai indigenous chickens, and crossbred chickens. J. Appl. Poult. Res 20, 409–420, https://doi.org/10.3382/japr.2010-00190
- Trabi E.B., Seddik H., Xie F., Lin L., Mao S., 2019. Comparison of the rumen bacterial community, rumen fermentation and growth performance of fattening lambs fed low- grain, pelleted or non-pelleted high grain total mixed ration. Anim. Feed Sci. Technol. 253, 1–12, https://doi.org/10.1016/j.anifeedsci.2019.05.001
- Trisiana A.F., Destomo A., Mahmilia F., 2021. Animal transportation: process, challenge and its effect on small ruminant. Wartazoa 31, 45–53, https://doi.org/10.14334/wartazoa.v31i1.2512
- Voelker J.A., Allen M.S., 2003. Pelleted beet pulp substituted for highmoisture corn: 3. Effects on ruminal fermentation, pH, and microbial protein efficiency in lactating dairy cows. J. Dairy Sci. 86, 3562–3570, https://doi.org/10.3168/jds.S0022-0302(03)73961-7

- Waigh T.A., Gidley M.J., Komanshek B.U., Donald A.M., 2000. The phase transformations in starch during gelatinisation: a liquid crystalline approach. Carbohydr. Res. 328, 165–176, https:// doi.org/10.1016/S0008-6215(00)00098-7
- Xue Y., Yin Y., Trabi E.B., Xie F., Lin L., Mao S., 2021. Transcriptome analysis reveals the effect of high-grain pelleted and nonpelleted diets on ruminal epithelium of Hu-lamb. Animal 15, 100278, https://doi.org/10.1016/j.animal.2021.100278
- Zhang C., Li M.M., Al-Marashdeh O., Gan L.P., Zhang C.Y., Zhang G.G., 2019. Performance, rumen fermentation, and gastrointestinal microflora of lambs fed pelleted or unpelleted total mixed ration. Anim. Feed Sci. Technol. 253, 22–31, https:// doi.org/10.1016/j.anifeedsci.2019.05.003
- Zhong R.Z., Fang Y., Zhou D.W., Sun X.Z., Zhou C.S., He Y.Q., 2018. Pelleted total mixed ration improves growth performance of fattening lambs. Anim. Feed Sci. Technol. 242, 127–134, https://doi.org/10.1016/j.anifeedsci.2018.06.008